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Generalized Linear Estimate of Functions
of Random Matrix Arguments

Pavil Kovanic

The optimum biear extimation problem in a generalized lofmulation is considered fof a func-
tion of ohservabonal dala maris being a summ of random maitrix signals and of & matrix of
observation erfors of nose. The criterium of oplintality o the minimization of the penalty which
1 & hinecar combination of e sguares of the norms of (wo kinds of efrors: of the error matria
which would take place in csnmation without noise and of the matric of actual estimating errors,
Results are applicable alvo in the case of deficient rank of covariance matrices and/or of signal
model. Carrelation of signaly with the noise 1= allowed. A prion statistics of signals can be in-
corporated 1o improve ihe estimates. T is shown that different known generalizations of least
" squares eshimalcs are special cases of the minimum penalty estimare.

INTRODUCTION

Impartance of the linear estimation problem lies not only in its direct applications
for various practical purposes but also in the necessity to include state and parameter
estimations procedures into “higher™ technigues such as, e.g., identification and
optimal control. Also the modern state estimation methods themselves and the
related theory of optimum linear filters are based on the classical method of least
squares [1]. Making use of the minimum mean-square error estimate (MSE) and
of 1tz generalization (GMSE) is most popular. But this approach is not an unigue
alternative and — under certain conditions — it may be not the best alternative,

There are twe kinds of errors arising in estimation: The first one is the error in
treatment of dala or signals nof corrupted by noise and another statistical errors.
The second one arses in the treatment of data or signals in the presence of noise.
The MSE techmique tequires the minimization of the error of the second kind under
condition that the error of the hrst kind is zero. Solution of this problem does not
exist always but the GMSE-approach [2] can be wsed always according 1o which the
error of the second kind s minimized under condition that the error of the first kind



reaches its minimum. The error of the second kind 1% in both cases the varance and
we may speak of conditjional minimum variance estimate (CMVE). We shall however
consider a more general case when data are random variables. In this formulation
pot only the actual but also the required result of estimation 15 a random quantity
and instead of the variance of the estimate, its mean square crror is 10 be taken into
account as the error of the second kind, Instead of CMVE we thus deal the more
general case, the conditional minimum square error estimate (CMSE).

Confusion might take place relaling 1o the actual sense of the error of the first
kind. Zero value of this error is sufficient for the unbiasedness of 1he estimate but
it is mot necessary. Unbiased linear estimates not satisfying this requirement can
be found minimizing the error of the second kind unconditionally. Such approach
is based on an idea of Semyonov (1954), As mentioned in [3], it was an alternative
and more general formuolation of the filtering problem to that one given by Wiener
and generalized by Zadeh and Ragazzini (1950). Therefore, the estimate minimizing
the error of the second kind unconditionally, the unconditional minimum mean-
square error estimate (UMSE) may be called also the Semyonov estimate. In the
case of the LMSE, the signal is considered 1o be not only unknown but a random vari-
able having a known mean and a given vanance, Hence the error of the second kind
is not identical with the vanance of the estimate in this case. The mean square value
of the estimating error of the UMSE can be less than that of the CMSE whercas
opposite is troe for the error of the first kind.,

It has been shown in [4] that minimizing unconditionally a linear combination
of mean sguare ermors of both mentioned kinds (a quantity called the penalty) one
obtaing a generalized estimate, the minimum penalty estimate (MPE). The UMSE is
obtained as an extremal special case of the MPE when taking zero weight of the error
of the first kind, whercas the CMSE can be considered to be an oppaosite extremal
case of unlimited weight of this error. Between these extremal cases one has a set of
COMPromising estimates,

It is the purpose of this paper to extend the minimum penalty estimate concept
to the case when data or signals are random matrices.

FRELIMINARIES

The model is given by 7 = p random malnces
(1) Yo ¥, + Y,

where ¥, represents signals, the matrix ¥, noises and another random ercors, the ¥
being composed of the observed data. Mean values and covariances of all com-
ponents are supposed 1o be known,

The required result of estimation under condition of zero noise should be a r x p

malrix
{2} Z|. = yl{ Fii
and in the presence of noise a matnix

{3} ZEI = Iﬁ'{rﬂ' Y,I

of the same dimensions, where 2F _ and 5 are some given operators. The estimate
will be of the general hinear form

(4) z@- WY + ¢,

where W and C are some constant matrices having dimensions f x n and 1 = p,
respectively.
As i measure of a random matnx £ we introduce a scalar quantity

(s) 1E] = [ {<EQE"]]",

the square rogr of the trace of the expected value of a quadratic form EQET for
a given weighting matrix (0 which is positive definite. It can be shown, that the ordi-
nary conditions

(6) [E| =0 for E=0 and |E[f>0 for E4 0,
@ £, + £ 5 &1 + [&].
and

() laE] = |a| |E]
Tor & real scalar o are fulfiled,
The error of the first kind is defined as

%) JEx] = WY + € — Z4].

the ¢rror of the second kind being

(10 [Eof = [w{Y, + ¥)+ C-2Z,].
The penaliy
(11) P = po Eof’ + p.JE}?

can be defined using the weights py and p,,
(12) Po =0,

(13) Po tp.=0,



Formulation of the problem

Given data of the form (1) and the matrices (2) and (1) characterizing a function
of the data. Values of this function are to be estimated. Given first and second statisti-
cal moments of a1l elements of the matrices (1), (2) and (3}, Determine matrices W
and € for which the lincar estimate (4) minimizes unconditionally the penalty {11},

Centralization of variables

Substituting (9) and (10} into (11) one obtains after formal transformations the
penalty

(14) po= {2,020 + p(2,020) + Wip FQP™) +
+ p L PQT) W = (P 2,077y +
+ 22,080 WY — Wip(TR20) +
+ Pl BQ200) +
+{pa + p)(C - C) OCT - )},

where

(15) 2o = Zg — (potZay + pXZN(po + 22).

(16) 2, =2, — (pelZs> + piZON(po + P.).

(17) Yo = ¥ = (pot¥) + p{¥OWpPa + 1)

(18) Fo = ¥ = (pol¥? + YO Mpo + p.).

(19) Co = (PolZad + puCZD — WipalY) + pLYONpe + p.).

In (14}, anly the last term depends on the constant matrix C. This term is 2 positive
semidefinite matna, its trace is a non-negative nomber. The optimum choice of the
constant lerm of the estimator (4) for an arbitrary Wis thos

(20) C=C,,

It can be menhioned that psing substiutions {17) gnd {19), one gets the estimating
formula (4) in a simplified form

(21) Z =Wy,
where again
(22) Z =2 —(polZo) + PLZN)(po + p.)-

A case characterized by the relations

(23) Z,m Z,

and

(24) (¥> =0

is met wsually in pracuce. Identity (23) expresses the requirement to minimize the
influence of the noise upon the results of estimation. The condition (24) does not
represent a loss of generality, The eventual non-zero mean of the noise may be
included into the data matrix Y,. In the case of validity of the conditions (23) and

{24) the transformation leading to the estimator {21) is simply the centralization of
variables.

Geometrical aspects

Let us denote

(25) M = po QT + p(F.0OF0)
and
(26) B = (5085 + (RQF + <RV .

Bath members of the right-hand side of {25) are positive semidefinite, they are summs
of covariance matrices, One can therefore oblain 4 decompaosition

(27) (F,QF0 = xx'

which is nol unigue, one has certun freedom in choosing a n % g matrin X having
the same rank m as the matnx { ¥,Q0 875, whereby

(28) mIn,
The rank s of the positive semidefinite matrix & i also not necessarily full,
[ 29) s&n.

The column-space of the matrices X and & will be denoted 7, and 57, respectively.
A natural assumption 15

e oS

representing no loss of generality, If some signals would be outside of the “error
space” then such signals can be determined exactly and it 1s not necessary to include
them 1nio the model beng considered. Denoting %, the n-dimensional space, we
conclude from {29)

(31) s

The case of no data veclors existing within a part of the space ¥, is thus taken into
account, Lo,

a7



To handle the rectangular matnces as well as possibly singular quadratic matnees
we shall use the most general version of a generalized inverse matrice [5]: The one-
condition generalized inverse A*' of an arbitrary matrix A4 is a matrix satisfying the
condition

(32) AATA = 4.

The inverse A* is not unique, in determining this matrix there remains a certain
choice making it possible 1o add further conditions when the matrix A™' does not
exasl.

It foltows from {30} that the columns-space of the matrix M (25) is in a general
case not identical with %, Each data matrix may be represented as

(33) Y= MA.

The equation

(34) (I — MMY)Y = 0

resulting from (32} and (33) can be interpreted as “there exist no data outside the

subspace ., of the n-dimensional space 5., (The symbol [ denotes the unity matrix. )
Taking inte account {30) we may apply the equation {34} also 1o the signal matrix ¥,

The column-space of the matrix X 15 identical with the row-spaces of both matrices
¢2o0PTs and <2,0775. One has therefore

(35) (2080 = LZOTD (X XT
as well as
(36) (2080 = (2,@F (XTp X7,

A GENERAL CASE OF THE BEST LINEAR ESTIMATOR
The expression {14) for the penalty can be rewritten substituting € = C, and
using (32}
(37) p = {polZaQ20) + p(2,Q20) — (polZo@ Ty +
+ P28 MU (pol FQZ0) + pCFLOZ0) +
+ [WM — (po(Zo@F "> +
+ P2, Q)] M [MTHT — (poC FRZ5) +
+ pROZ0N

The penalty is thus minimazed for
(38) WM = po(ZoQF") + p(2.080) .

Multiplying (38) by M*' we obtain W, MM®*'. The component Wl — MA*' ) may
be chosen frecly, as this part of the estimator will not add anything 1o the result
of estmation because of (M), A simple choice is

(39) Wl — MMy =0,

We have therelore
{41]} W, = W,MAM" = [p,,{zuﬂfi} + pl(f,v@f’:ﬂ MY

Thas result can be presented in a more exphoil form, 10 s convenient 1o start with
the cuse of a matrix X having full tank m. The result will be generalized afterwards.
We have seen already that & matrix X satis(ying (27) is contsined in the column-space
of the symmetrical matrix B (26). Therefore, a matrix lemma [5] may be applied 1o
determine a generalized inversion of the summ of two matrices:

(A1) M= (1) B[ = Xolpaflpe + pu)d + X8V X)) XEBY ]
Using (1), (35), (36}, (40) and (41} we come to the result

(42) Wy = 1f{1 + ) (<2,0F]) +
+ 2 ORI (0 + A+ Xietx) X 4
+ (2,270 B[t — X (101 + ) E + X5 X, XLEY],
where

{(43) r=p.fp,

15 the relatve weight of the penally components,

The matrix (11 + e} 4 XJEYN )7 exists always because of Tull rank of the
matne X, posibve senudefimieness of the noneero matnx 8 and because of non-
negativeness of the parameter | 4 r. Nonsingulamy of the matnx x;m‘x, will be
shown below.

MNow it 15 possible to proceed 10 the case of the i % § matrix X with no assumptions
on it rank. Such matox may always be represented as

(44) X = X F

using a full-rank matrix X and an m = g matnx F sansfying ihe semiorthonormal
comidition

{45) FFT =1_...

It can be verified by the substitution into (32) that

(46) X = Fxy
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and

(47)  FNIf{L + i 4 XEBPX) ' F = [1f{1 + ) X5 X + XTEX]',
where the substitution

(48) FIff = X9X

is admissible because of the Mull rank of the matrix X,
One has therefore the best linear estimator in the form

(49) W, =(1 + 1) ({ZQ@F)y + rZQFD)XTP(() 4 1) XSX 4
+XTHVXE XTHY 4 (2087 B[ - X((1 + 1) XV 4
+ xl’ﬂ'lx}'l ITH.I]

applicable withoul any restrictions of generality.

ERRORS

Error of the first kind

To simplify writing of formulae one may make use of the possibility 1o introduce
additional conditions defining the generalized inverse more specifically. We need
here the decomposition of symmetrical positive-semidefinite matrices

{50) B = §,DI8]
amd
(s1) (Revh = 5,0is],

where the clements of diagonal matrices D7 and P} are positive latent roots of the
matrices. Matrices 5, and 5, having dimensions n % s« and n = m are column-
arthonormal,

(52) SIS =t |
(53) 15 R A

Clearly

(54) X, =5.D,

and by [44) also

{35} X =5.0F

are allowed

The Moore-Penrose generalized inverse [5] will be used below for matrices B and
X, defined as

{56) B = 5,078
and

{57} Xt = FTp;'s!
whereby

(58) D51 = (X8) = X8

These inverses are unique, They satisfy (32) as well as three additional conditions [5].
Denoting

(59) Vo = (2,000 X',

(60) V, = (2,000 x+,

(61) V, =<Zefly sl

{62) G =D]'SI'x,

{63} o= {1+ 7) ' XX 4 XTmex e,

(e} o=+ ¥+ = KE
one obtams from {49)
{65 W, = (PHG" + v, ) D] 'sT

which substituted into {9) written as

(66) 1] = [wF, - 2,
gives the error of the first kind in the form
(67) FE = [ {2,020 ~ V] +

+ [PHGTG — (¥, - Vv.G)] [PHGTG ~ (¥, — v.G)]") ]
Error of the second kind and the penalty

This error is defined by {10 and (15)=(19) as

(68) |€al = IW,? ~ 2, .

A
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Using the notation introduced above one yields
(69) JET = tr {<Z,Q20> — Vg — V¥ +
+ ¥y — VG + GG (K, = V.G +
+ [PH = (Vg = VG + GTG) '] G + GG G[PH —
— (Ve — VG + GG ']

Substitution of {67) and (6%) inta (11} gives the penalty resulting from the use of
the best estimator {42):

Extremal values of the errors

] P o= potr {<2,020) + (2,020 —
=~ [¥y + V)G + V][ — GHGT] (¥, + ) GT + ¥ ]"} .

It follows from (67) that the mimmum of the error JE,] is reached for

1) [PH], G'G =V, = ¥,G.

In ihis equation, the term [ PH ], depends on the parameter r. To solve this equation
for the value r,, minimizing the error || £,]|, we use the relations given above and take
into account that

(72) 55!5. =5,

as follows from (31}, Therefore

{73) S5ASS)" = Ly
the malrix S[S, is a full-rank matrix as well as the matnx
(74} G, = D7'5Is8.D,.

The matrix GG, is thus non-singular and the minimality condition is
(75) (1 + £V [Ve — Wl + (636,71 + VGGEG,) '] = 0,

Excluding the case of zero matrix value of the bracketed term we may conclude
that the single minimum of the crrar takes place when

(76} Fo=opy o,
The minimum value of the error |E,| is thus reached for
(17) [EJlnw = 17 <2020 — (2,070 X¥'X*( 7,021

being non-zero in a genetal case,

As to the error of the second kind || Ej||, its minimum value
(78) IEokmin = [t¢ (<2002 — (Z.QF]) XX F,020) -
— < 2,Q%]> B QIY) +
+ (20087 X7 — (2,087 BX){1 + XT8N (X 1,020 -

- X'BHCR Q2]
i obtained from the definiion
(79) [£a) = W - 2,
wrillen as
(80) FEoll = [ {€2aQ20) — Vobd — VBT +

+ (Vg — VGHT + GG} ' [V, — V.G +
+(PH — (¥, — VG + G"G) ) G + GG GPH —
=¥ = KG)t + GTG) I,
the minimum being reached lor
{31) [PH],G = (v, = K,G){I + G'G) ' G

Solution of this equation for the value ry of the parameter v gives the condition
of minimality of the error £, in the following form:

{52} [V, — [V = V.G)FFT + G'GPRGTG] =0,
IN the bracketed matrix term is not zero then the unigue solution is
(83) Fyo= 0.

Hence, 1t may be summanzed thar the estimating errors of boh kinds reach their
mirmum values al two opposite ends of the range of the parameter r.

SPECIAL CASES: UNCONDITIONAL AND CONDITIONAL
MINIMUM SQUARE CHROR ESTIMATES

It is apparent that the later of both extremal cases considered above (the case
£ o= ) represents a generalization of a discrete version of the Semyonov estimate
(UMSE-uncondiional mumimum meyn-squars error estimate). The error [|£,] is
identical with the penally in this case and it is minimized unconditionally via minimuza-
ton of the penalty

It has 10 be shown that the former of the extremal cases (the case r — o) is the

case of generalized conditional minimum square error estimate (CMSE). Let us
conuder the problem of this estimate independently-
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Denoting
{84} WS, =Y
one can write the error | £, n the form
(85) IE) = [tr 1¢2.Q20 — V¥T + (VG = V) {VGo — VI
minimized unconditionally by
{B‘ﬁ} mu = V. .
This equation has always 3 solution as V, is in the row-space of G, (see definitions
(60} and (74).
W prefer here to use the Tull-rank matrix Gy {74) because of simpler calculanons
and 1o generalize the formulac for a more general G (62) afterwards. Also the matrces

¥, and ¥, are taken here for a full-rank X,
General solution of the equation (86) for the unknown mairix Vis [5]

(87) V=VG6 + L[} - G,GE].
where
(s8) GY = (GiGy) ' G}

and the matrix L is an arbitrary matrix of proper dimensions. Each V' satisfying (486)
must be thus of the form (87 and only the matrix Lmay be subject to any additional
conditions. Using estimator (87) one obtains the error of the second kind
(#9) IEol = [ {<20025) — Vobg — VbT +
v (V,GE = ¥V GE - KT 4 (V- Vo) (K, - Ka' +
+ (L - V)i - GG*)(L ~ AL B

mnimized by

(90) L=V,.

But this substitution makes (87) identical with the special case of (49) for r — m:
{91) b= + VI — GoGE]

It may be concluded that the minimum penalty estimate in the case r — oo Jeads
to minimization of the error of the second kind || £,] constrained by the requirement
to minimize the error of the first kind |E,| wnconditionalty.

Estimability

We have seen that the minimum penalty estimate always exists. In ihis sense the
problem of estimahility is dropped. But the ordinary concept of estimability relates

te the existence of such CMSE for which ns
(92) E - WS -2, =0.

It clesr from (6], that it means also that the error of the first kind |E,] is zero.

For lincar operators the regquired resuli 2, of the estimation in the case of data
represented as
{93} F.=X4.

[

where the matry A is a random maina for which
{3) CAQA™Y =1,
should equal

(95) Z, =PA

with u given operator P, The matrix X is non-random. As shown above, the estimator
of the CMSE type is obtained from (49) by r w oo

(36} W,, = {2000 X XTHXPXTR +
+ (2,Q85 B) — X{XTEX P XA

It 15 easily seen that for the Moore-Penrose inversion

(97) X[(XTHXP X8X] = X
and
{48} ."("{[I'B'Xj’ X‘B‘I] = X,

The condition &f the estumability thus lollows by substitution of (92), (94), (96
and (37 into (91} o A S

(99} PXTXY = p,

Omne may conclude that every hinear function of data is “minimum-penalty-esti-
mable™, but for that ones for which (99} holds, an estimate exists minimizing the
error | Eq| under constraint that the error matrix £, as well as the error | E,] are zero.

Least squares estimates as special cases of the minimum penalty estimate

A gencralization of the discreie Zadeh-Ragazaini estimate for the case of estimable
linear functions and for vector data has been presented in [6]. This result can be
obtained rom (96) by replacing the matrix @ by the scalar 1 and by using (99).



e In order 1o obtain from (96) the Lewis-Odell's generalization of the Gauss-Markov

estimate applicable also in estimating non-estimable jinear functions ot data in the
sense of CMSE, following simplifications have to be supposed:

. There are no correlations of data with noise
. Moise variance matrix B (26) is nonsingular
. Data are vectors, 0 = 1

(2,08 =0

N S

ok =

Lh B

It has been shown in [_l] that all the results obtained via the linear filter development
are special cases of the results obtainable from the method of least squares viewpoint.
In the terms of the present paper, the main result of [1] presenting the optimum
linear estimates of a random process having a priori statistics, is a special case of
(40) for r = 0, and it may be understood as the Semyonov estimate.

{Received December 3, 1973))
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