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1 Summary

Data processing algorithms based on the gnostical theory of uncertain data possess high
robustness with respect to both outlying data and changes of their statistical character-
istics. There are several ways of substantial robustification of control systems by means
of such algorithms. Effectiveness of this approach is demonstrated by examples.

2 Gnostical theory of uncertain data

Gnostical theory of uncertain data has been developed as an alternative of statistics for
practical applications where nothing is known on a statistical model of the process, data
are strongly disturbed, processes are non-stationary and there is lack of data to develop
a statistical model. Algorithms based on the gnostical theory are inherently robust
with respect to "outlying” data. They use no statistical assumptions related either to
processes or to data. All necessary (gnostical) characteristics of the uncertainty are
estimated directly from data. This is why a low sensitivity to changes of behaviour of
disturbances is achieved by gnostical procedures. There are limits to the applicability
of this theory connected with the validity of its axioms. However, these axioms express
only basic algebraic requirements with respect to the nature of uncertainty.

3 Available gnostical algorithms

The following gnostical procedures have already been developed relevant for control
applications:
s gnostical process monitors (treating time series, performing robust filtering of the

process level, of its trend and of its acceleration, including robust diagnostics of
the process);

e gnostical predictors for robust forecasting of disturbed processes;
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e gnostical analysers of small data samples (for a detailed analysis of important
data, such as estimating of probability of rare events, emergency limits for pro-
cess control, random control of production quality, reliability studies, testing of
homogeneity of objects and of their behaviour);

¢ gnostical identifiers of models (for robust identification of mathematical models
of a process or object from disturbed observations).
These programs include some important auxiliary procedures such as estimation of scale
parameters, data transformations, ete.

4 Robustification of control systems

There are several ways of robustifying control systems by means of gnostical procedures:
1) PID-control using gnostical filters to get robustly filtered proportional,
integral and derivative signals;

2) robust filtering of the observed output level by the gnostical monitor
preceeding the input of an optimum linear control system;

3) control using a robust gnostical predictor;

4) robust adaptive control based on the on-line identification of the system
model by means of a gnostical identifier;

5) gnostical formulation of the optimum control problem with correspond-
ing synthesis.
Methods 1) - 4) combine the linear methods of synthesis of regulators with robust
treatment of signals, Method 5) promises maximum effect but it opens new theoretical
problems because of nonlinearity: instead of the classical control error e. = z — z; or
(2 — 23)/20 (where z is the actual and z; the required output, z,2; € (0,00)) a more
complicated gnostical error function is used having the following form:

e; = (¢9—1/q)/(g+1/q)

where g = (2/2,)*/* and where s is a positive scale parameter. (Parameter s character-
izes the intensity of random disturbances. It can be estimated from data).

Another important point is the quality of control. Within the framework of the
gnostical theory there are functions of e, available which evaluate the information loss
and entropy gap caused by uncertainty of individual data. It could be interesting to
optimize the control using these important criteria. It can be shown that it would result
in high robustness.

5 Example 1

Examples demonstrate the effects of applying gnostics to control problems. Let us
consider a continuous dynamic system of the type 1/(1+p)* controlled by an LQ-optimal
discrete-time self-tuned controller. In addition to a slowly changing disturbance, an
uncorrelated random component exists due to which the system output is observed



as noisy. We protect the input of the controller against the observation errors by
means of a filter. Fig.1 shows the case of a strong observation noise modelled by the
absolute value of disturbing signal of the Cauchy type, the filter being a "specialized” one
prepared by the Bayesian statistical approach under an a priori assumption of Cauchy
distribution. (We shall denote this type of filter as " Bayes/Cauchy™). The same system
and disturbances filtered by the simplest gnostical monitor is in Fig.2. The actions of
the controller are more modest here and the quality of the control is not worse. This
takes place in spite of the fact, that the statistical filter makes use of the additional a
priori information about the type of the distribution function which is not assumed by
the gnostical filter. What happens after a change in the noise distribution function?
The case of an absolute value of a weak uniformly distributed signal is in Fig.3 with the
same gnostical filter. It is obvious from the Fig.4 that the control quality is not affected
even by a substantial increase of variance of the uniformly distributed noise in the case
of the gnostical filter. However, as seen in Fig.5, the system using the Bayes/Cauchy
filter is unstable with this noise. The same happens when the noise is the absolute value
of a strong Gaussian disturbance. The controller protected by the gnostical filter still
works well (Fig.6) while it fails with the Bayes/Cauchy filter (Fig. 7) as well as without
filter (Fig.8).

6 Example 2

This example is related to the application of an identifier within an adaptive control
system. What is shown here is as follows: a gnostical identification procedure due to its
robustness approaches the true parameters of the identified system in a much shorter
time interval and with much smaller maximum errors than an unrobust (e.g. least
squares) identification method. The signal under consideration is a series of real data
representing rather complicated vibrations of a steam generator of an atomic power
station. The problem is of the diagnostical type: to discover and classify changes of
vibration modes as symptoms of dangerous states of the object. One of such test in-
cludes analysis of the difference between the actual and predicted values of the observed
quantity. Necessary one-step-ahead predicted values are obtained by an AR-model of
the 24-th order. The coefficients of this predictor are identified (estimated) by two
methods:

a) ordinary least-squares procedure;
b) gnostical identification procedures according to the algorithm described
in detail in [1].
To evaluate the quality of the identification process we introduce the notion of "noise
amplification” A of a predictor having the form

M
Yiy1 = Z Cili—i+1

i=1



(where y; is the value observed in the j—th time interval, M is the order of the AR-model,
¢ is the estimate of the i-th coefficient) by the equation

M
A=)¢

i=1

It is interesting to analyse the time dependence of coefficient A resulting from applying
both of the methods mentioned:

Tab.1 Noise amplification for two identification methods

Time | Number | Noise amplification A of the method
(sec) | of data | least squares gnostical
0.2 100 65000 4.63
0.4 200 7300 1.76
0.6 300 1160 1.51
0.8 400 200 1.48
1.0 500 114 1.42
1.2 600 49.9 1.46
1.4 700 9.42 1.42
1.6 800 5.75 1.44
1.8 900 2.69 1.42
2.0 1000 1.72 1.39

As this comparison shows, application of the robust gnostical identifier should result in
better quality of the control.
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Automatic control under a randon disturbance
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Fig.24

Gutomatic control wunder a random disturbance
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Fig.7: Automatic contvol under a vandom disturbance
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Fig.St

utomatic control under a random disturbance
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Fig.&:

Automatic control wunder a random disturbance
A...observed (noisy) system outpuil
EB...filtered comtroller 1rput

C...controller output
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Filter: Gnostical




